How the Parent Guides a Charlotte Mason Math Lesson

Charlotte Mason described the role of the teacher as being a guide in the lessons. That involves a shift in our thinking sometimes, because usually that’s not the way we were taught when we were growing up. We were taught that the teacher is the fountainhead of all knowledge. So what does it look like for the teacher, the parent, to be a guide? And especially in math lessons? That’s where we want to focus today. Joining me today is Richele Baburina. We’re going to talk about the teacher being a guide in the Charlotte Mason math lessons and how that looks.

Sonya: I love, as we’ve discussed this, you have shared some great ideas of how the teacher, the parent, can guide the child in the math lessons. So just talk for a minute about what that means and how a guide might be different from what we assume the teacher’s role should be. 

Richele: From standing at a board and delivering a lecture. 

Sonya: Yes, yes. 

Richele: So when I was thinking about this, I was just thinking about how I love to hike. If I went someplace new to hike, someplace that was a little more strenuous, maybe it had a larger scope than what I’m used to, than my little hikes around the back of the house, I was thinking about what I would look for in a guide if, say, I were going to the Swiss Alps or the Smoky Mountains. 

Sonya: I love the ideas that we were discussing earlier, so let’s just walk through them, and you can share them with our readers. You talked about how the guide’s attitude is so important in that role as a guide. Talk a little bit about that. 

Richele: So as the parent-teacher, we might not have had a good experience with math ourselves growing up, but that doesn’t mean we need to bring that experience into our child’s math lesson. We want to have a good attitude toward math and discover, maybe, some of the wonder and beauty of math alongside our child. We also don’t ever want to give our child the idea that he is somehow behind, because this really undermines a child’s confidence. 

We might not have had a good experience with math ourselves growing up, but that doesn’t mean we need to bring that experience into our child’s math lesson.

Sonya: Absolutely. And as a guide for a hike, it’s all about your attitude. You bring a positive attitude. It’s not like, “Well, I guess you can follow me if you can keep up.”

Richele: Wouldn’t that be horrible? I mean, we could be on a hike with our children, a physical hike, and they might begin with, “Oh, are we there yet? How long is this going to take? I just want a snack,” type of a thing, but we don’t want to be the ones with poor attitudes. And our good attitude really helps regulate the atmosphere of the math lesson and brings our child into a good attitude as well. 

Sonya: And the guide might know there’s a challenging part of the hike coming up, and he might actually let you know that it’s coming, but it’s going to be presented in a positive way. It’s not like, “Oh here comes a tough one! I hope you’ll make it.” 

Richele: Or “I don’t know if you can do this.” 

Sonya: Exactly, but it would be more, “We have a little challenge coming up around the corner, and I’m going to be right here with you. We can do this.”

Richele: “Let’s see what we can discover together.”

Sonya: Oh I like that. Now, that also can play into another aspect of a guide that we’ve talked about, and that is not pushing our little hiker off a cliff or up the path. 

Richele: Can you imagine if your guide on a real hike was trying to push you? Or trying to pull you up that hill and not allowing you to go at your own pace? 

Sonya: He disappears around the corner, and he’s like, “Hello? Anyone?” And then he peeks back, “Aren’t you here yet?” 

Richele: Yeah, definitely. So we do want to go at the pace of the child in her math lesson. 

Sonya: Another aspect about that guide, as we’ve alluded to, is that he knows the path that he’s on. There is the whole idea of being prepared as a guide. Some, as you mentioned earlier, some parents might not have had a good experience with math, so talk a little bit about how we can guide a student and be prepared as a guide even if it’s an area that’s unfamiliar to us. 

Richele: Sometimes it just means staying one step ahead of our child in arithmetic. This could be as easy as simply reading through the lesson in the book before you begin so that you’re prepared. You have any concrete objects or manipulatives that you need. You have the graph book or the math notebook that you need, and you’ve looked through the lesson ahead of time so that you’re able to actually pay attention to your child. 

Sonya: Yes, and may I mention that when you say read it ahead of time, we don’t mean while the child’s sitting there waiting, correct? 

Richele: Can you imagine if you started your hike up the mountain and the guide pulled out the map, or the topographical map, and just sat there and was like “Hmm. . .” 

Sonya: Like, “Turn it around.” (laughs)

Richele: That would not be a good guide. 

Sonya: We also talked about this. Being prepared doesn’t mean you have all of the answers, this is a whiz for you, it’s about, “We’re in this together, sharing the effort.” 

Being prepared doesn’t mean you have all of the answers. It’s about, “We’re in this together, sharing the effort.” 

Richele: Right. We want to share in the effort to know, and that actually helps our child see that math is a worthy subject; even if they don’t plan on going into a STEM career field, it’s a worthy subject to be studied. There’s something to be gained there, even if it’s not for its utilitarian purposes. 

Sonya: And I think it helps them to see that we are willing to put forth effort to keep learning ourselves as well. Learning is not relegated to just school years; it should become a lifelong pursuit—this thirst for more and more knowledge. 

Richele: And just because we may have stopped at a certain point in our own math education doesn’t mean that we can’t have the adventure of going along with our child on this mountainous realm. 

Sonya: That’s true. We might think, “I can’t teach this particular level of math,” but if you can just keep one step ahead, you might be able to be that guide. What if, though, you get there, and you read that lesson ahead of time, and it is not computing? What do you do then? 

Richele: And believe me, I think that we all, no matter how much math we have had in our lives, we do eventually reach a level, or we might reach a level, where there is math that we have not come across before. So again, we share in the effort to know. We could have a great textbook that can help us, but we can also reach out for help. And this can come in in a few different ways. It might be by asking your husband, or your own parent, or you might turn to a video. Not for your child to watch the video, but you might find a few different directions for approaching this concept that you can employ in your child’s math lesson. 

Sonya: It could help you grasp it, so then you can convey it to your child as you are paying attention to your child. I love how you put that. That’s so important. We’re not just going through the lesson; we want to have enough of a grasp of the lesson that we can focus on: “Is she understanding it? Is she, or is he, grasping it as well?” I love that point. 

Richele: As your child gets older, he might be grasping things a little bit faster than you, but to have a parent by his or her side becomes an important part of establishing a relationship. 

Sonya: So talk a little bit about independent work and how that relates then, because you said having that parent by your side. Is our goal to turn that child loose in the Swiss Alps? 

Richele: Yes. 

Sonya: So what’s that look like? 

Richele: So math was never meant to be an actual, what we call, “independent subject” in our own terminology that we grew up with. But the ability to work independently is a habit that Charlotte Mason talks about. Now from the very first math lessons, we want our child to be going in his own power. So even though we might be giving all of the questions orally, teaching them how to write their numbers, the child is the one to do the work. We aren’t going to help our child over every difficulty. Can you imagine if your guide in the Swiss Alps came and scooped you up and carried you over every difficulty? 

Sonya: “Oh, here’s a rock. Here, let me carry you over that.” Yeah. 

Richele: Right. And that guide would not be giving you the opportunity to work your muscles, to have a feeling of exhilaration and accomplishment. 

Sonya: You’d pretty much become stagnant. That this is as far as you can go, because you would not have the opportunity, as you said, to develop more muscles and keep growing so you could take on bigger challenges. So you would just plateau out. 

Richele: We also don’t want to constantly give our children crutches. So we don’t want to say, “Oh that’s almost right.” Because we want absolute truth to unfold before our child’s eyes, just like a guide would allow you the time to actually stop and take in the view, or the time to look down and see the smallest alpine flower and study it. We want our child to be able to do the work, take the time that he needs, and take the time to kind of wonder at, or grapple with, these numbers. 

Sonya: So what does that look like as we go through the grades? You said in the younger grades, we are giving the mental problems, we’re doing it orally, and the child is responding orally, so it’s almost all together-work in those younger grades. And I know as we go through the Charlotte Mason Elementary Arithmetic series, we start implementing a little bit of, “We’ve gone through the concept, and I can see that the child has grasped it, and he feels confident with it,” so, “Now I’m going to give you a few of these problems to do independently.” And I know it says in the book, as soon as they’re done, “Now I’m available; we’re going to go over it together immediately to see if there are any issues that we need to resolve or clarifications we need to give.” That’s about fourth grade or so. 

Richele: Right. We begin that at about fourth grade, and, again, you do want to go at the pace of your child. If your child is not fluent at reading and writing, then they should not be given a lot of independent work in that way, because the reading and writing mechanics are going to hinder him. It’s not a reading and writing lesson. But as the child is fluent, or gaining fluency in reading and writing, it’s important for the child to be able to notate and to be able to read the problem. So we have a target that we’re looking at. When we introduce the new concept and we work with our child with that new concept, and we see that he has gained some confidence and ability and understanding working with this new concept, then we can give our child some problems to work independently. Now, it’s immediately afterward that we want the child to bring his work to us, so that we can look at it and make sure that that our child has not gotten any wrong ideas. 

Sonya: Got off the track somewhere. 

Richele: And that’s just like going up a mountain with your guide. If we get off a mountain path, it could actually be dangerous. We want to have that realization so we don’t get completely lost. We have somehow gotten off the path, and, with the parent as a guide, he can see that almost immediately. At this point, if we’re mountain hiking, we’re going to immediately turn around and follow our steps back. In the math lesson, we’re just going to take a few steps back to see where our child got off in his or her understanding. Make sure the ground is firm under her feet, and then we’re going to continue up the mountain. 

Sonya: Together. 

Richele: Together. 

Sonya: Then doing some independent work as she has grasped it. That’s around in book four or so, so whatever age the child is when she gets to that point. Then does that continue through the rest of the upper grades? Are we still a guide? I guess I’m asking, is our goal to get to the point where we just hand the child the book and say, “Here, go do this whole book this year”? 

Richele: So that is not the goal, and it is never the goal, even in other subjects, in the Charlotte Mason education. Just as you would introduce a new author or introduce a new book to your child, you’ll be there for the introduction of a new concept all the way throughout. But again, as your child has comfort and ability with working with the new concept, then he’s allowed to do that independent work on his own, and any review can be taken independently as well by that point. 

Sonya: That makes sense. And that will gradually increase as the child gets older, I’m assuming. 

Richele: It does. But again, because math specifically is a subject where it can be easy to get off the path, this is why we want to remain available and be attentive to our child. It’s actually going to take a lot less time to turn around and go back, to where a child has lost his understanding, if we’re with him than it would take if you handed your child a textbook, and then a month later you began going through his worksheets or his written work and realized that he didn’t understand it. Now you’re going to have to go back a lot further to find out where he got off the path. 

Sonya: That’s a good point, and I know for some parents this seems like it’s going to take a lot of time now. “You mean I’ve got to introduce every new concept? Why do I have to do that? I don’t have the time to do that.” How much time are we talking? I understand, it varies according to concept and according to child, but we’re not talking hours and hours every day, right? 

Richele: Not at all. So even in the high school years, the math lesson is never above 30 minutes, and so it is really maybe going to take, now of course, each concept could be different, it could it could take a little bit more, but we’re talking about 10 minutes, because we don’t advance until our student has concrete understanding underneath him. As we said, the ground is firm underneath his feet, and so every step up that mountain is dependent on the steps before, which should be secured. You should have secured his understanding, so at this point, since he already understands what came before, it’s probably going to take about 10 minutes to introduce a new concept. 

Sonya: I think we can all give 10 minutes a day to each child for a math lesson, and, as you said, in the long run, it will save you time. 

Richele: It will. 

Sonya: I love that. This also kind of plays into another point that you mentioned, and that is that a good guide pays attention to those who are hiking with him. And I think it is important for the teacher, as a guide, to pay attention to that child, as you said, where he got off the path, but even more than that, right? 

Richele: Right. We should be paying attention to our child’s stamina level. It could be that we need to take a break, we might need water going up the mountain, or we might need to just switch to mental math, or maybe we need to switch to a different subject altogether. So we should be paying attention to our child also when it comes to manipulatives. If a child is getting bored using manipulatives, or balks at them, then it’s time to put those away, and they can be pulled out whenever they’re needed again. So this leads me to an important point, and that is, when you’re going to be going on a hike, we want to be prepared, but we don’t want to weigh ourselves or our hikers down with unnecessary gadgets. I remember going on a hike; it was a trail in Black Mountain called Rattlesnake Trail. 

Sonya: Oh this sounds encouraging. (laughs)

Richele: There were a couple of different types of hikers, and there was a family whose children even had their scooters along. Well those scooters had to be dropped off pretty early in the hike, and then there were the hikers that had huge backpacks full of every gadget they could possibly think would be necessary. Well as prepared as they were, they were actually weighed down by the amount of objects they had. So when we’re going to be doing math lessons with our student, we’re going to be using manipulatives, but we only want to give them what’s needed, and we don’t need this expensive gear. We just need our everyday objects. So going up a mountain, you just might need one good hiking stick and a big bottle of water. And with your children, you need a variety of manipulatives, but they are very simple everyday objects. 

Sonya: I love this comparison that we’ve been talking about: the guide on the mountains as compared to the teacher as a guide in the math lessons. That picture is going to help a lot of our readers wrap their minds around what it means that the teacher should act as a guide in the math lessons; so thanks a lot for your experience hiking and sharing it with us and how it looks in a math lesson as well. 

Richele: And I hope everyone just learns to enjoy the mountain views alongside their child. 

Sonya: Oh that’s a good point. We can get so focused on the trail that we forget to lift our heads and look at the scenery. Good point. Thanks.

One comment

Comments are closed.